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● key -> value mapping
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Key-value stores

k1 → v1
k2 → v2
k3 → v3
k4 → v4
k5 → v5
k6 → v6
k7 → v7
k8 → v8
k9 → v9

put, get, scan



● key -> value mapping
● skewed workload: some 

keys are hotter
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Key-value stores

k1 → v1
k2 → v2
k3 → v3
k4 → v4
k5 → v5
k6 → v6
k7 → v7
k8 → v8
k9 → v9

put, get, scan

+ + + + + + +
Hot Cold



● key -> value mapping
● skewed workload: some 

keys are hotter
● spatial locality: some 

ranges are hotter
○ e.g., complex keys
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Key-value stores

k1_l1 → v1
k1_l2 → v2
k1_l3 → v3
k2_l1 → v4
k2_l2 → v5
k3_l1 → v6
k3_l2 → v7
k3_l3 → v8
k3_l4 → v9

put, get, scan

+ + + + + + +
Hot Cold



● key -> value mapping
● skewed workload: some 

keys are hotter
● spatial locality: some

ranges are hotter
○ e.g., complex keys

● Sample production trace:
○ appname_timestamp

○ 1% of apps ⇒ 1% key prefixes 
⇒ 94% of events
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Key-value stores

Mobile apps events distribution
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LSM-trees 
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LSM-trees are designed for temporal locality
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LSM-trees are less suited for spatial locality
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Ranges are 
fragmented

scan(...):



● Ordered key-value store

● Optimized for spatial locality

● Low write amplification

● Persistent, fast recovery

● Atomic operations, including scan
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EvenDB



● Dynamically partitioned key space into chunks
○ Much smaller than shards

○ Much larger than blocks

● Chunks are the basic unit for
○ Disk I/O

○ Compaction

○ Memory caching

○ Concurrency control
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Chunk-based organization
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Chunks metadata

chunk chunk chunk

Linked list of chunks

Chunk objects hold 
metadata - versions, 
sync. mechanisms, 
file handles, stats etc.

RAM 
disk
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Chunks index

chunk chunk chunk

i n d e x

Quickly locate the chunk 
whose range includes 
the given key

RAM 
disk
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Disk storage - updates
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Immediately store in log;
Occasionally merge log into SST

row 
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Disk storage - lookups
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#1 - search row cache

#2 - search log

#3 - search SST

Scans always search 
SST and log

row 
cache
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Memory cache - updates

RAM 
disk

funk 

chunk

SSTable

log

Bloom 
filters

row 
cache chunk chunk

i n d e x

#1 - Store 
in log

munk
 cache

funk 

chunk

munk

SSTable

log

RAM 
disk

chunk chunk

munk

i n d e x

funk 

SSTable

log

funk 

SSTable

log

Bloom 
filters

#2 - Store 
in munk

#4 - Rarely flush 
munk to SST

#3 - Occasionally 
rebalance munk



16

Memory cache - lookups
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● 3 benchmark suites
○ Traces from internal production system, 256GB DB - some presented next

○ Standard and extended YCSB benchmarks - results in paper

● State-of-the-art LSM: RocksDB
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Evaluation
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Real dataset ingestion

EvenDB 4.4x faster,

write amp. 4x lower (better)
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Compactions impact

RocksDB throughput 
drops during compaction

EvenDB runs 
much smoother
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Real dataset scans

EvenDB 1.2x faster than 
RocksDB

~38 minutes stall 
after DB creation

RocksDB faster here 
due to long compactions



● EvenDB introduces a novel key-value store architecture
● Chunk arrangement better suited for spatially-local 

workloads than LSM:
○ Lower write amplification

○ Single level of storage

○ Memory serves reads and writes

● EvenDB outperforms RocksDB when:
○ Workload is spatially-local or most working set fits in RAM

○ In par otherwise

○ Demonstrated in real workload and synthetic YCSB benchmarks
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Summary
Thank you! Qs?


