
EvenDB: Optimizing Key-Value
Storage for Spatial Locality

Eran Gilad, Edward Bortnikov, Anastasia Braginsky, Yonatan
Gottesman, Eshcar Hillel (Yahoo Research), Idit Keidar (Technion),
Nurit Moscovici (Outbrain), Rana Shahout (Technion)

● key -> value mapping

2

Key-value stores

k1 → v1
k2 → v2
k3 → v3
k4 → v4
k5 → v5
k6 → v6
k7 → v7
k8 → v8
k9 → v9

put, get, scan

● key -> value mapping
● skewed workload: some

keys are hotter

3

Key-value stores

k1 → v1
k2 → v2
k3 → v3
k4 → v4
k5 → v5
k6 → v6
k7 → v7
k8 → v8
k9 → v9

put, get, scan

+ + + + + + +
Hot Cold

● key -> value mapping
● skewed workload: some

keys are hotter
● spatial locality: some

ranges are hotter
○ e.g., complex keys

4

Key-value stores

k1_l1 → v1
k1_l2 → v2
k1_l3 → v3
k2_l1 → v4
k2_l2 → v5
k3_l1 → v6
k3_l2 → v7
k3_l3 → v8
k3_l4 → v9

put, get, scan

+ + + + + + +
Hot Cold

● key -> value mapping
● skewed workload: some

keys are hotter
● spatial locality: some

ranges are hotter
○ e.g., complex keys

● Sample production trace:
○ appname_timestamp

○ 1% of apps ⇒ 1% key prefixes
⇒ 94% of events

5

Key-value stores

Mobile apps events distribution

P
ro

ba
bi

lit
y

 d
en

si
ty

10-2

10-4

10-6

10-8

0

App popularity ranking

100 101 102 103 104

Log
scale

6

LSM-trees

k1..knk1..kn k1..kn

k1..kn

k1..kn

k1..knMemory

Disk
L0

L1

L2

MemTable

7

LSM-trees are designed for temporal locality

Memory

Disk
L0

L1

L2

MemTable

Compactions
merge hot and
cold ranges

Update time

8

LSM-trees are less suited for spatial locality

Memory

Disk
L0

L1

L2

MemTable

Ranges are
fragmented

scan(...):

● Ordered key-value store

● Optimized for spatial locality

● Low write amplification

● Persistent, fast recovery

● Atomic operations, including scan

9

EvenDB

● Dynamically partitioned key space into chunks
○ Much smaller than shards

○ Much larger than blocks

● Chunks are the basic unit for
○ Disk I/O

○ Compaction

○ Memory caching

○ Concurrency control

10

Chunk-based organization

11

Chunks metadata

chunk chunk chunk

Linked list of chunks

Chunk objects hold
metadata - versions,
sync. mechanisms,
file handles, stats etc.

RAM
disk

12

Chunks index

chunk chunk chunk

i n d e x

Quickly locate the chunk
whose range includes
the given key

RAM
disk

13

Disk storage - updates

RAM
disk

funk

chunk

SSTable

log

Bloom
filters

chunk chunk

i n d e x

Immediately store in log;
Occasionally merge log into SST

row
cache

14

Disk storage - lookups

RAM
disk

funk

chunk

SSTable

log

Bloom
filters

chunk chunk

i n d e x

#1 - search row cache

#2 - search log

#3 - search SST

Scans always search
SST and log

row
cache

15

Memory cache - updates

RAM
disk

funk

chunk

SSTable

log

Bloom
filters

row
cache chunk chunk

i n d e x

#1 - Store
in log

munk
 cache

funk

chunk

munk

SSTable

log

RAM
disk

chunk chunk

munk

i n d e x

funk

SSTable

log

funk

SSTable

log

Bloom
filters

#2 - Store
in munk

#4 - Rarely flush
munk to SST

#3 - Occasionally
rebalance munk

16

Memory cache - lookups

RAM
disk

funk

chunk

SSTable

log

Bloom
filters

row
cache chunk chunk

i n d e x

munk
 cache

funk

chunk

munk

SSTable

log

RAM
disk

chunk chunk

munk

i n d e x

funk

SSTable

log

funk

SSTable

log

Bloom
filters

Search/scan
munk

● 3 benchmark suites
○ Traces from internal production system, 256GB DB - some presented next

○ Standard and extended YCSB benchmarks - results in paper

● State-of-the-art LSM: RocksDB

17

Evaluation

18

Real dataset ingestion

EvenDB 4.4x faster,

write amp. 4x lower (better)

19

Compactions impact

RocksDB throughput
drops during compaction

EvenDB runs
much smoother

20

Real dataset scans

EvenDB 1.2x faster than
RocksDB

~38 minutes stall
after DB creation

RocksDB faster here
due to long compactions

● EvenDB introduces a novel key-value store architecture
● Chunk arrangement better suited for spatially-local

workloads than LSM:
○ Lower write amplification

○ Single level of storage

○ Memory serves reads and writes

● EvenDB outperforms RocksDB when:
○ Workload is spatially-local or most working set fits in RAM

○ In par otherwise

○ Demonstrated in real workload and synthetic YCSB benchmarks

21

Summary
Thank you! Qs?

